Single Image 3D Interpreter Network

Jiajun Wu*

Tianfan Xue*

Joseph Lim

Yuandong Tian

Josh Tenenbaum

Antonio Torralba

ECCV 2016

Bill Freeman

(* equal contributions)

What do we see from these images?

Motivation

- What do we see from these images?
 - 3D object structure
 - 3D object pose/viewpoint
 - Appearance/texture

Humans see rich 3D information from a single image.

Single Image 3D Perception

Single Image 3D Perception

Approach I: Using 3D Object Labels

ObjectNet3D [Xiang et al, 16]

Approach II: Using 3D Synthetic Data

Render for CNN [Su et al, '15] Multi-view CNNs [Dosovitskiy et al, '16] TL network [Girdhar et al, '16] PhysNet [Lerer et al, '16]

Our Approach

Intermediate 2D Representation

Real images with 2D keypoint labels

Synthetic 3D models

Only 2D labels!

Ramakrishna et al. '12 Grinciunaite et al. '13

Contribution I

- Real 2D labels + synthetic 3D models
- Keypoints as intermediate representations
- A 3D-to-2D projection layer for end-to-end training

3D Object Representation

Voxel

Girdhar et al. '16 Choy et al. '16 Xiao et al. '12

Mesh

Goesele et al. '10 Furukawa and Ponce, '07 Lensch et al. '03

Skeleton

Zhou et al. '16 Biederman et al. '93 Fan et al. '89

Skeleton Representation

3D Skeleton to 2D Keypoints

3D INterpreter Network (3D-INN)

3D-INN: Image to Keypoint

Inspired by [Tompson et al. '15]

IMG

Using 2D-annotated real data

Input: an RGB image

Output: keypoint heatmaps

3D-INN: Keypoint to 3D Skeleton

Using 3D synthetic data

Input: rendered keypoint heatmaps

Output: 3D parameters $\{P, R, \vec{\alpha}, T\}$

3D-INN: Initial Design

Initial Results

Image

Inferred Keypoint Heatmap

Inferred 3D Skeleton

Errors in the first stage propagate to the second

3D-INN: End-to-End Training?

3D-INN: End-to-End Training?

3D-INN: 3D-to-2D Projection Layer

$$P(R\sum_{k=1}^{K}\alpha_{k}B_{k}+T)$$
 3D-to-2D projection is fully differentiable.

3D-INN: 3D-to-2D Projection Layer

Using 2D-annotated real data

Input: an RGB image

Output: keypoint coordinates

Objective function:

$$\min \left\| P(R\sum_{k=1}^{K} \alpha_k B_k + T) - X_{2D} \right\|_2$$

3D-INN: Training Paradigm

Three-step training paradigm

II: 3D Interpreter

I: 2D Keypoint Estimation

III: End-to-end Finetuning

Refined Results

Image

Initial Estimation

After End-to-End Fine-tuning

Contribution II

- Real 2D labels + synthetic 3D models
- Keypoints as intermediate representations
- A 3D-to-2D projection layer for end-to-end training

Training: our Keypoint-5 dataset, 2K images per category

Keypoint-5 dataset

Training: our Keypoint-5 dataset, 2K images per category

IKEA Dataset [Lim et al, '13]

Training: our Keypoint-5 dataset, 2K images per category

SUN Database [Xiao et al, '11]

Training: our Keypoint-5 dataset, 2K images per category

SUN Database [Xiao et al, '11]

3D Structure Estimation

Images Results

IKEA dataset [Lim et al, '13]

RMSE of estimated 3D keypoints

Method	Bed	Sofa	Chair	Avg.	
3D-INN	88.6	88.0	87.8	88.0	
Zhou, '16	52.3	58.0	60.8	58.5	

Average recall (%)

Viewpoint Estimation

Images Results

Method	Table	Sofa	Chair	Avg.	
3D-INN	55.0	64.7	63.5	60.3	
Su, '15	52.7	35.7	37.7	43.3	

Average recall (%)

Localization and Viewpoint Estimation

Category	VDPM	DPM+VP	Su et al.	V & K	3D-INN
Chair	6.8	6.1	15.7	25.1	23.1
Sofa	5.1	11.8	18.6	43.8	45.8

Viewpoint estimation on the PASCAL 3D+ dataset [Xiang et al, '14]

Chair Embedding

Manifold of chairs based on their inferred viewpoint

Contributions

- Single image 3D perception
 - Real 2D labels + synthetic 3D models
 - Keypoints as intermediate representations
 - A 3D-to-2D projection layer for end-to-end training

