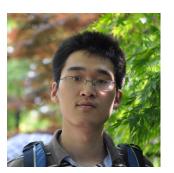
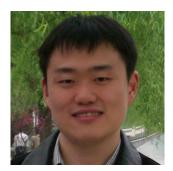
Single Image 3D Interpreter Network

Jiajun Wu*



Tianfan Xue*

Joseph Lim



Yuandong Tian

Josh Tenenbaum

Antonio Torralba

ECCV 2016

Bill Freeman

(* equal contributions)

What do we see from these images?

Motivation

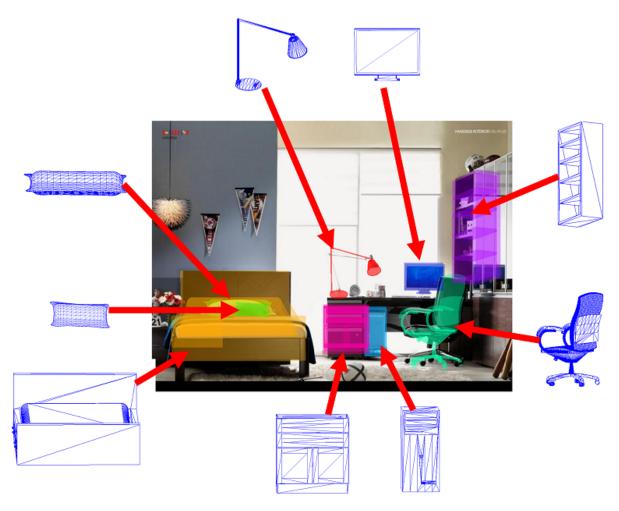
- What do we see from these images?
 - 3D object structure
 - 3D object pose/viewpoint
 - Appearance/texture

Humans see rich 3D information from a single image.

Single Image 3D Perception

Single Image 3D Perception

Approach I: Using 3D Object Labels



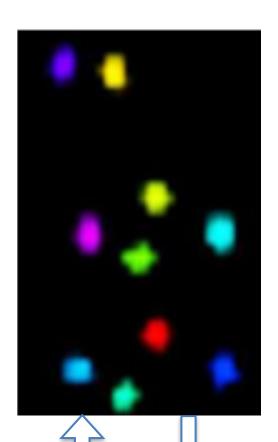
ObjectNet3D [Xiang et al, 16]

Approach II: Using 3D Synthetic Data

Render for CNN [Su et al, '15] Multi-view CNNs [Dosovitskiy et al, '16] TL network [Girdhar et al, '16] PhysNet [Lerer et al, '16]

Our Approach

Intermediate 2D Representation



Real images with 2D keypoint labels

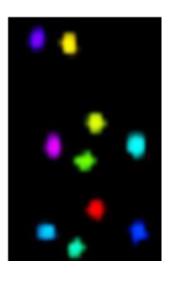
Synthetic 3D models

Only 2D labels!

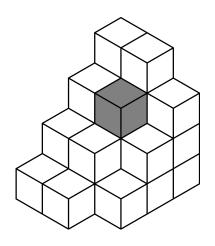
Ramakrishna et al. '12 Grinciunaite et al. '13

Contribution I

- Real 2D labels + synthetic 3D models
- Keypoints as intermediate representations
- A 3D-to-2D projection layer for end-to-end training

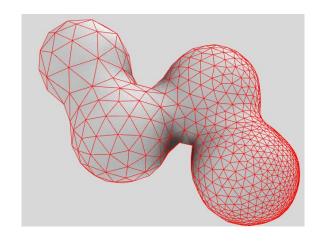


3D Object Representation



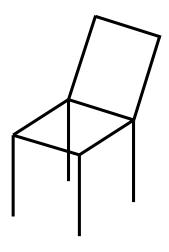
Voxel

Girdhar et al. '16 Choy et al. '16 Xiao et al. '12



Mesh

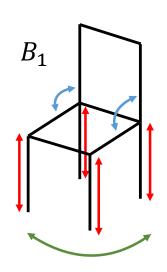
Goesele et al. '10 Furukawa and Ponce, '07 Lensch et al. '03

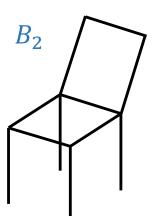


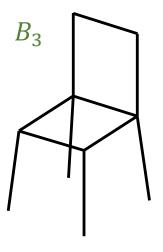
Skeleton

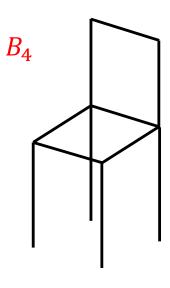
Zhou et al. '16 Biederman et al. '93 Fan et al. '89

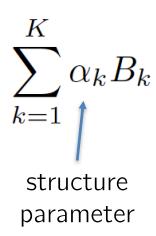
Skeleton Representation



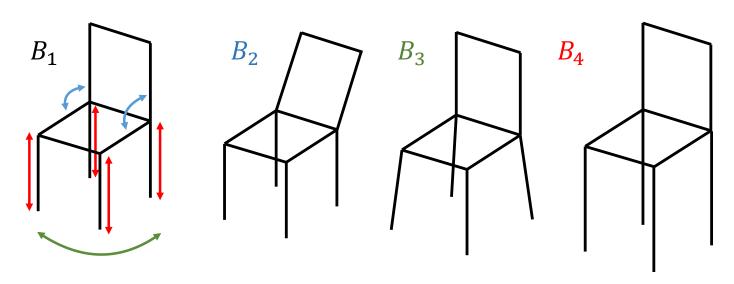


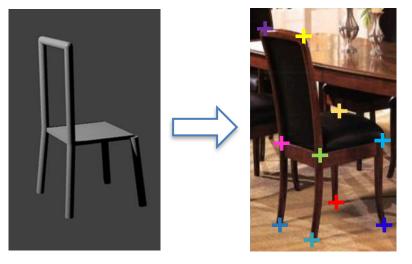


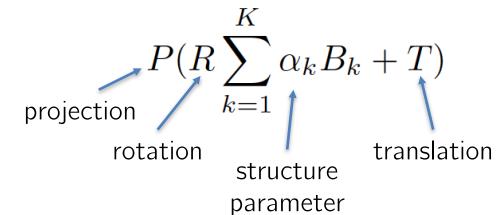




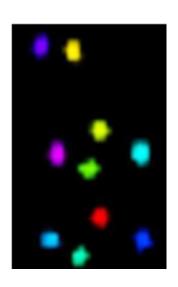
3D Skeleton to 2D Keypoints

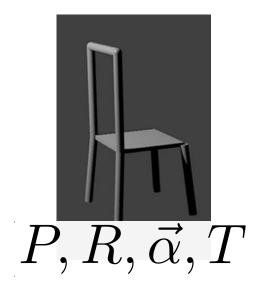




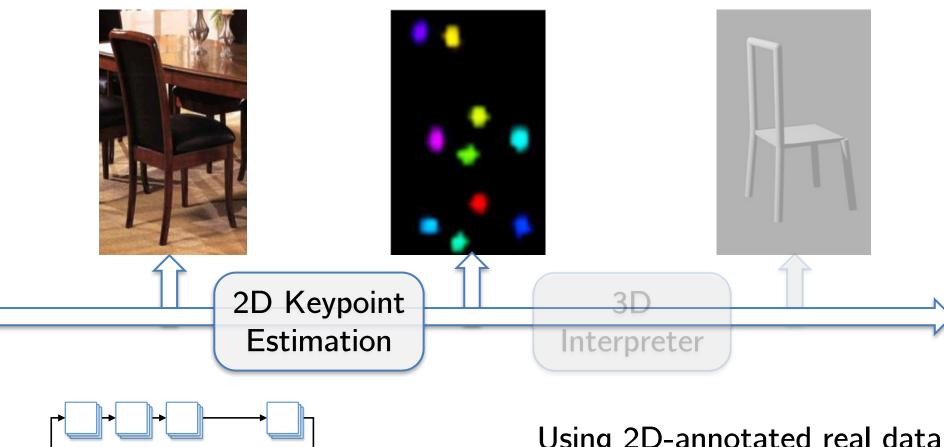


3D INterpreter Network (3D-INN)





3D-INN: Image to Keypoint



Inspired by [Tompson et al. '15]

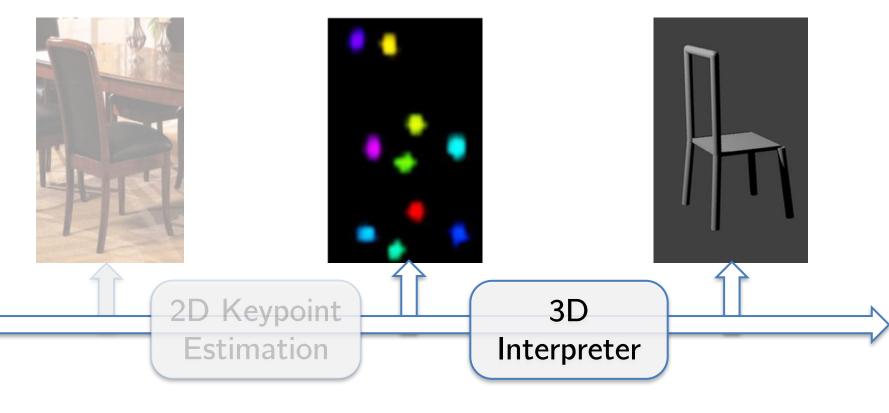
IMG

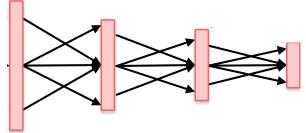
Using 2D-annotated real data

Input: an RGB image

Output: keypoint heatmaps

3D-INN: Keypoint to 3D Skeleton



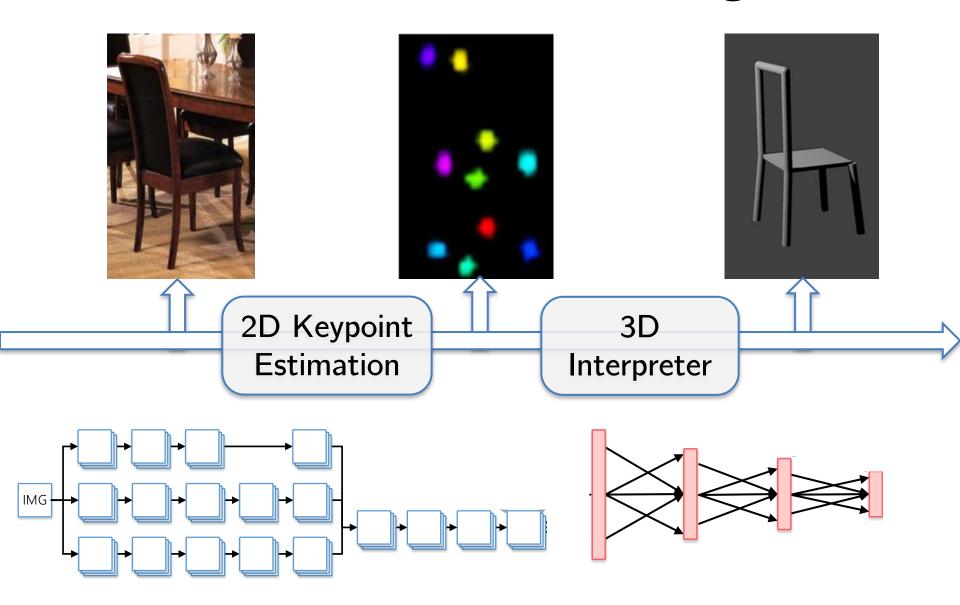


Using 3D synthetic data

Input: rendered keypoint heatmaps

Output: 3D parameters $\{P, R, \vec{\alpha}, T\}$

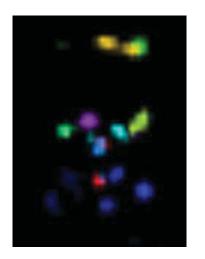
3D-INN: Initial Design



Initial Results

Image

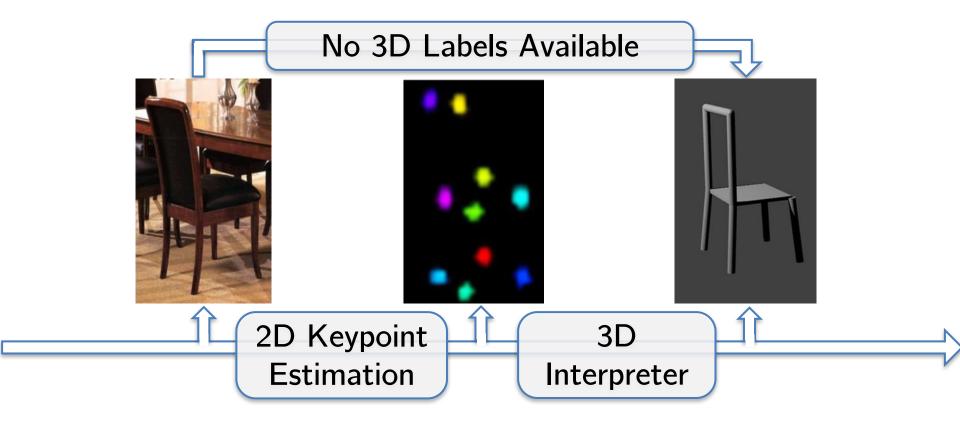
Inferred Keypoint Heatmap



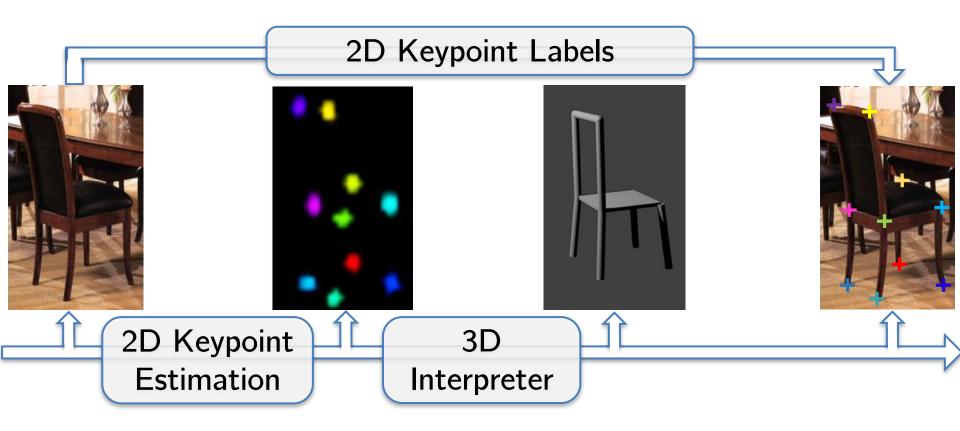
Inferred 3D Skeleton

Errors in the first stage propagate to the second

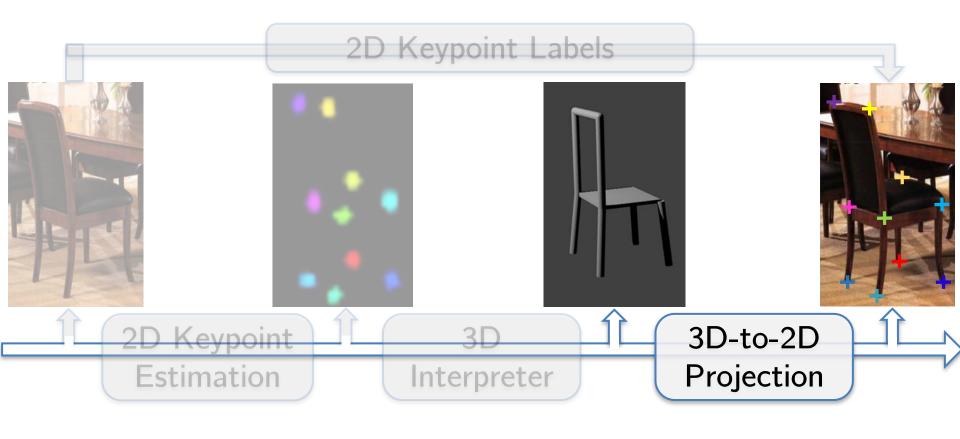
3D-INN: End-to-End Training?



3D-INN: End-to-End Training?

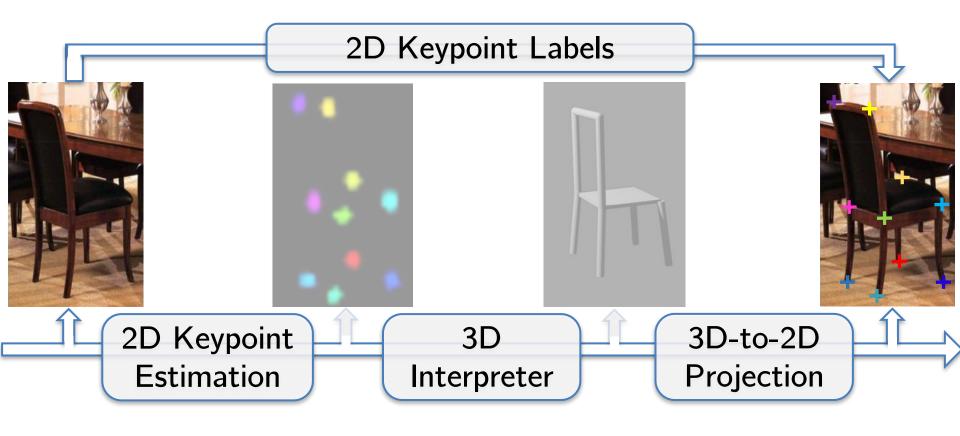


3D-INN: 3D-to-2D Projection Layer



$$P(R\sum_{k=1}^{K}\alpha_{k}B_{k}+T)$$
 3D-to-2D projection is fully differentiable.

3D-INN: 3D-to-2D Projection Layer



Using 2D-annotated real data

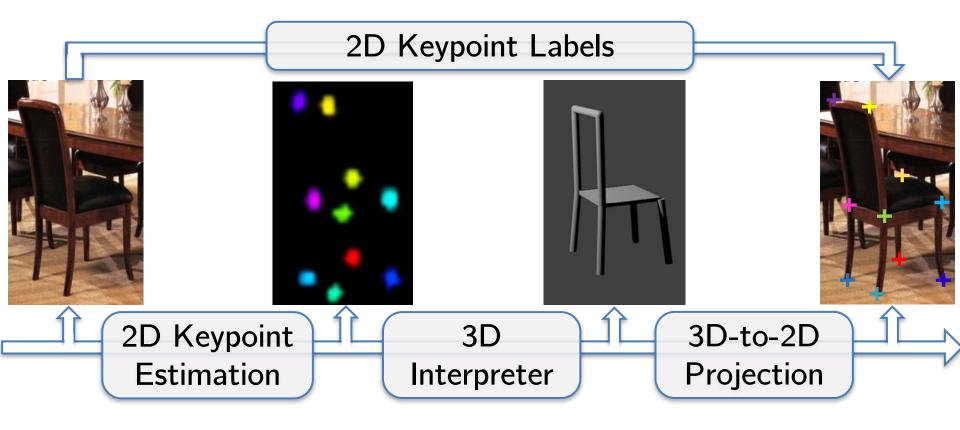
Input: an RGB image

Output: keypoint coordinates

Objective function:

$$\min \left\| P(R\sum_{k=1}^{K} \alpha_k B_k + T) - X_{2D} \right\|_2$$

3D-INN: Training Paradigm



Three-step training paradigm

II: 3D Interpreter

I: 2D Keypoint Estimation

III: End-to-end Finetuning

Refined Results

Image

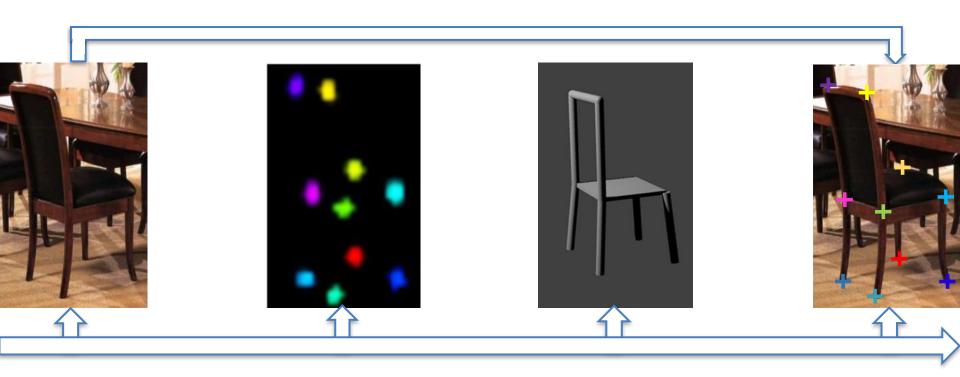
Initial Estimation

After End-to-End Fine-tuning



Contribution II

- Real 2D labels + synthetic 3D models
- Keypoints as intermediate representations
- A 3D-to-2D projection layer for end-to-end training



Training: our Keypoint-5 dataset, 2K images per category

Keypoint-5 dataset

Training: our Keypoint-5 dataset, 2K images per category

IKEA Dataset [Lim et al, '13]

Training: our Keypoint-5 dataset, 2K images per category

SUN Database [Xiao et al, '11]

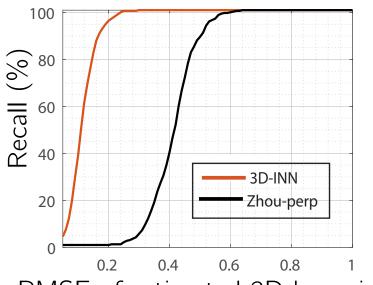
Training: our Keypoint-5 dataset, 2K images per category

SUN Database [Xiao et al, '11]

3D Structure Estimation

Images Results

IKEA dataset [Lim et al, '13]



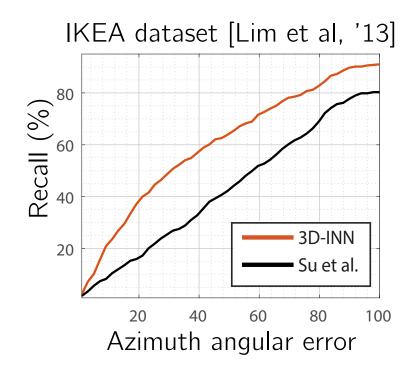
RMSE of estimated 3D keypoints

Method	Bed	Sofa	Chair	Avg.	
3D-INN	88.6	88.0	87.8	88.0	
Zhou, '16	52.3	58.0	60.8	58.5	

Average recall (%)

Viewpoint Estimation

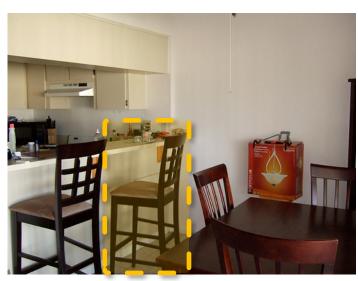
Images Results



Method	Table	Sofa	Chair	Avg.	
3D-INN	55.0	64.7	63.5	60.3	
Su, '15	52.7	35.7	37.7	43.3	

Average recall (%)

Localization and Viewpoint Estimation



Category	VDPM	DPM+VP	Su et al.	V & K	3D-INN
Chair	6.8	6.1	15.7	25.1	23.1
Sofa	5.1	11.8	18.6	43.8	45.8

Viewpoint estimation on the PASCAL 3D+ dataset [Xiang et al, '14]

Chair Embedding

Manifold of chairs based on their inferred viewpoint

Contributions

- Single image 3D perception
 - Real 2D labels + synthetic 3D models
 - Keypoints as intermediate representations
 - A 3D-to-2D projection layer for end-to-end training

