
Single	Image	3D	Interpreter	Network
Jiajun	Wu*1,	Tianfan Xue*1,	Joseph	J.	Lim2,	Yuandong Tian3,	Joshua	B.	Tenenbaum1,	Antonio	Torralba1,	William	T.	Freeman1,4

1	MIT	2	Stanford	University			3	Facebook	AI	Research			4	Google	Research		(*	equal	contributions)	

Overview
Problem:	3D	structure	and	pose	estimation	from	a	single	RGB	image

Solution: Use	synthetic	3D	object	models for	training
Challenge:	3D	annotations	are	hard	to	obtain

Challenge:	Hard	to	render	realistic	images	with	synthetic	3D	data	
Solution: Use	heatmaps of	2D	keypoints as	intermediate	representations

Challenge:	Errors	propagate	in	a	two-stage	model
Solution: Add	a	3D-to-2D	projection	layer for	end-to-end	finetuning

Pipeline 3D	Skeletons

3D	INterpreter Network	(3D-INN)

Refined Heatmaps2D Annotated Images

3D Skeletons
3D Parameters

2D Coordinates3D Synthetic Data

Keypoint RefinementInitial Keypoint Estimation Reconstruction3D Interpreter

(a) (b) (c) (d)

Initial Heatmaps

Projection Layer

Data or Supervision Network Connection

IMG

Three-stage	training:	1)	image	to	2D	keypoint 2)	2D	keypoint to	3D	skeleton			3)	end-to-end	fine-tuning

3D	Structure	and	Pose	Estimation Retrieval
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Contributions
• 3D-INN:	a	generative	model	estimating	3D	structure/pose	from	a	single	image
• Connecting	2D	annotations	and	synthetic	3D	objects	via	heatmaps of	keypoints
• Enabling	end-to-end	training	w/o	3D	labels	through	a	3D-to-2D	projection	layer

2D	Keypoint Estimation
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On	FLIC	dataset	[Sapp	and	Taskar,	13]
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On	IKEA	dataset	[Lim	et	al.,	13]
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