

Single Image 3D Interpreter Network

Jiajun Wu^{*1}, Tianfan Xue^{*1}, Joseph J. Lim², Yuandong Tian³, Joshua B. Tenenbaum¹, Antonio Torralba¹, William T. Freeman^{1,4}
1 MIT 2 Stanford University 3 Facebook Al Research 4 Google Research (* equal contributions)

Overview

Problem: 3D structure and pose estimation from a single RGB image

Challenge: 3D annotations are hard to obtain

Solution: Use synthetic 3D object models for training

Challenge: Hard to render realistic images with synthetic 3D data

Solution: Use heatmaps of 2D keypoints as intermediate representations

Challenge: Errors propagate in a two-stage model

Solution: Add a 3D-to-2D projection layer for end-to-end finetuning

3D INterpreter Network (3D-INN)

Three-stage training: 1) image to 2D keypoint 2) 2D keypoint to 3D skeleton 3) end-to-end fine-tuning

Evaluation

On IKEA dataset [Lim et al., 13]

Azimuth angular error

RMSE of estimated 3D keypoints

2D Keypoint Estimation

On FLIC dataset [Sapp and Taskar, 13]

Normalized distance

Visualization

Retrieval

Object Graph

Contributions

Normalized distance

- 3D-INN: a generative model estimating 3D structure/pose from a single image
- Connecting 2D annotations and synthetic 3D objects via heatmaps of keypoints
- Enabling end-to-end training w/o 3D labels through a 3D-to-2D projection layer